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Abstract. Given a feasible solution, the inverse optimization problem is to modify some parameters
of the original problem as little as possible, and sometimes also with bound restrictions on these
adjustments, to make the feasible solution become an optimal solution under the new parameter
values. So far it is unknown that for a problem which is solvable in polynomial time, whether
its inverse problem is also solvable in polynomial time. In this note we answer this question by
considering the inverse center location problem and show that even though the original problem is
polynomially solvable, its inverse problem is NP–hard.
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1. Introduction

Recently there are quite a few papers discussing inverse network flow problems
and inverse combinatorial optimization problems, see, for example, [1–5]. Given
a feasible solution for a particular optimization problem, the inverse optimization
problem is to modify some parameter values of the original problem as little as
possible (under a certain norm), and sometimes even with other restrictions such
as the bound constraints on the adjustment of some parameters, to make the given
feasible solution become an optimal solution under the new parameter values. As
shown in [3–5], the inverse problems of many combinatorial/network optimization
problems can be solved by strongly or weakly polynomial algorithms. In fact in [6]
it is shown that for a large class of combinatorial/network optimization problems,
if the original problem can be solved in polynomial times, then its inverse problem
can be solved in polynomial time by a quite uniform methodology. However, a
very interesting problem still remains unsolved: is it true that the inverse problem
is solvable in polynomial time whenever the original problem is solvable in poly-
nomial time? In this note, we will claim that the answer to this question isNo! We
shall present an example, the inverse center location problem, which is NP-hard
although its original problem has a strongly polynomial method to solve. With



214 M.C. CAI, X.G. YANG AND J.Z. ZHANG

this example, we see that some inverse optimization problems are more difficult to
solve than their original problems.

2. Inverse center location problem

The center location problem, which is to find the “best” location of a facility in
a network to minimize the distance from the facility to the most remote vertex of
the network, is a very practical problem and especially relevant to the problem of
locating optimally a hospital, a police station, a fire station, or any other service
facility. The center location problem is polynomially solvable [7].

We now consider the inverse center location problem, that is, to modify the
weights of a network as little as possible under thel1 norm such that a given vertex
becomes a center of the network. We describe the inverse center location problem
formally as follows.

LetG = (V ,A,w) be a directed and connected graph, whereV is a vertex set,
A is an arc set,w : A → R+ is a distance (weight) function. Lets be a specific
vertex inV . The inverse center location problem is to changew to w∗ > 0 such
that

(a) s becomes a center ofG underw∗, and
(b) the total adjustment

∑
e∈A
|w(e)− w∗(e)| is minimum.

The inverse center location problem has potential applications as it can be
related to the regional development plan and show how to spend as less cost as
possible to make an existing facility be ‘relocated’ to the center position. In this
section, we try to show that the inverse center location problem is NP-hard. The
technique which we use to reach this purpose is a polynomial time transformation
of the SATISFIABILITY problem into an instance of a decision problem of the
inverse center location problem.

A Boolean variablex is a variable that can assume only the valuestrue and
false. We callx̄ the negation ofx, wherex̄ = false if x = true, and x̄ = true
if x = false. A Boolean variable and its negation are both calledliterals. Given
a group of Boolean variables, aclauseconsists of some literals of those Boolean
variables. A clause is saidtrue if one of its literals istrue. The SATISFIABILITY
problem [8] is as follows:

Givenm clauses{C1, C2, · · · , Cm} involving n Boolean variables{x1, x2, · · · ,
xn}, is there a set of values for these Boolean variables (called atruth assignment)
such that all clauses aretrue?

If such a set of values exists, we say the SATISFIABILITY problem issatis-
fiable.

The SATISFIABILITY problem is the earliest natural NP–complete problem
proven by Cook [9].

THEOREM . The inverse center location problem is NP-hard.
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Proof.Given an instance of the inverse center location problemG = (V ,A,w)
and a numberL, the decision problem of the inverse center location problem is
whether there is a solutionw∗ > 0 (called a feasible solution) satisfying the request
(a) above and

(c)
∑
e∈A
|w(e)− w∗(e)| 6 L.

First, it is trivial to see that the decision problem of the inverse center location
problem is in the NP class.

Let us now construct a reduction from the SATISFIABILITY problem to a
decision problem of an inverse center location problem.

Consider an arbitrary instance of the SATISFIABILITY problem withn vari-
ables{x1, x2, · · · , xn} andm clauses{C1, C2, · · · , Cm}. Without loss of generality,
we assume that, for each variablexi and each clauseCj , xi does not appear inCj
more than once, andxi andx̄i do not both appear inCj .

Construct a digraphG = (V ,A) as follows:

V =
n⋃
i=1

{ti , ui, vi} ∪ {tn+1, tn+2, tn+3} ∪
m⋃
j=1

{qj },

A =
n⋃
i=1

{(ti, ui), (ti , vi), (ui, ti+1), (vi, ti+1)} ∪ {(tn+1, tn+2), (tn+1, tn+3)}

∪
n⋃
i=1

m⋃
j=1

({(ui, qj )|xi ∈ Cj } ∪ {(vi, qj )|x̄i ∈ Cj })

∪
n+1⋃
i=1

{(tn+2, ti), (tn+3, ti)} ∪
n⋃
i=1

{(tn+2, ui), (tn+2, vi), (tn+3, ui), (tn+3, vi)}

∪
m⋃
j=1

{(tn+2, qj ), (tn+3, qj ), (qj , t1)} ∪ {(tn+2, tn+3), (tn+3, tn+2)}.

In this digraph, the Boolean variablexi corresponds to vertexui, its negationx̄i
corresponds to vertexvi, and the clauseCj corresponds to vertexqj . Further, there
is an arc(ui, qj ) if and only if xi ∈ Cj , and(vi, qj ) exists if and only ifx̄i ∈ Cj .
We callui andvi literal vertices,qj clause vertices, and the arcs(ui, qj ) or (vi, qj )
clause arcs. Note that fromtn+2 and tn+3, there are arcs to all other vertices. Let
s = t1, define a weight function onG as

w(e) =
{

0 e = (ui, ti+1) or (vi, ti+1),

1 otherwise.

Note that the distances fromtn+2 (andtn+3) to all other vertices are 1.
Now we claim that the SATISFIABILITY problem is satisfiable if and only if

there is a feasible solution for the decision problem of the above inverse center
location problem whose total absolute adjustment of the weights is at mostn (i.e.
L = n in (c)).
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Figure 1. The digraph G

We first assume that the SATISFIABILITY problem is satisfiable. LetP ∗ =
t1z1t2z2 . . . tizi . . . tn+1 denote the path fromt1 to tn+1 wherezi is the vertex corres-
ponding to the true literal, that is,zi is either vertexui or vi according toxi = true
or false, i = 1, 2, . . . , n. For example, ifx1 = false and x2 = true, then the
part of the path fromt1 to t3 would be t1v1t2u2t3. Let us change the weights
of the arcs on pathP ∗ to zero to obtain the new weight vectorw∗. Obviously,∑
e∈A
|w(e) − w∗(e)| = n. We denote bydw∗(t1, p) the distance fromt1 to a ver-

tex p ∈ V (G) underw∗. Thendw∗(t1, p) 6 1 for every vertexp ∈ V (G). To
justify this, first it is clear thatdw∗(t1, p) = 0 for each vertexp on P ∗. Hence
dw∗(t1, tn+2) 6 1, dw∗(t1, tn+3) 6 1, anddw∗(t1, z′i) 6 1 for each vertexz′i (since
dw∗(t1, ti) = 0) wherez′i denotes either vertexvi or ui not onP ∗, i = 1, 2, . . . , n.
And for each clause vertexqj , as there exists at least one true literal, say`i, in
clauseCj , and the vertex corresponding to`i is onP ∗, implying dw∗(t1, qj ) 6 1.
Hence the claim is true. But from any vertex other thant1, its largest distance to
other vertices is at least 1. So, vertext1 becomes a center ofG under the new weight
w∗. In other words,w∗ is a feasible solution satisfying (a) and (c) withL = n.

Conversely, suppose that there exists a solutionw∗ such thatt1 becomes a center
of G underw∗ and

∑
e∈A
|w(e)− w∗(e)| 6 n. We need to find a truth assignment to

make all clauses true.
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Denote bydw(u, v) the distance from vertexu to vertexv underw, which is
equal to the length of the shortest path fromu to v underw, and denote bydw(u)
the largest distance fromu to other vertices underw.

Let r = dw∗(t1). Sincedw(t1, tn+2) = n + 1, and the total adjustment of the
weights cannot be more thann, of courser > 1. On the other hand, asdw(tn+2) =
1, we know thatdw∗(tn+2) 6 n+1. Sincet1 is now a center,r 6 dw∗(tn+2) 6 n+1.
As all acyclic paths fromt1 to tn+2 have lengthn+ 1 underw, butdw∗(t1, tn+2) 6
dw∗(t1) = r, we need to shorten at least one pathP from t1 to tn+2 by length
x = n + 1− r or more. The fact that underw all arcs fromtn+2 has unit length
means that we need to extend one arc fromtn+2 by at least lengthr − 1 = n − x
to ensuredw∗(tn+2) > r. Similarly, we should also extend one arc fromtn+3 by at
least lengthn−x to ensuredw∗(tn+3) > r. So, the total modification of the weights
is at leastx + 2(n − x) = 2n − x. We claim thatx = n. In fact, fromr > 1, we
havex 6 n. On the other hand, from 2n − x 6 ∑

e∈E
|w(e)− w∗(e)| 6 n, we have

x > n. Thusx = n, from which we can easily deduce thatr = 1, and only one
acyclic path fromt1 to tn+2 can be modified.

Furthermore, we know that no adjustment can be made on(tn+1, tn+2) and
(tn+1, tn+3). In fact if say, the arc(tn+1, tn+2) is shortened byδ > 0, then the
distance fromt1 to tn+3 underw∗ is at least(n + 1) − (n − δ) = 1 + δ. So,
r > dw∗(t1, tn+3) > 1+δ which conflicts withr = 1. Therefore we can only modify
one path fromt1 to tn+1. Such a path consists of one and only one route fromti to
ti+1 in the pair{A+i , A−i } for i = 1,2, · · · , n, whereA+i = {(ti, ui), (ui, ti+1)} and
A−i = {(ti , vi), (vi, ti+1)}. Note that ifA+i is on the path, the weight of(ti , ui) is
reduced from 1 to 0; if the path containsA−i , the weight of(ti , vi) becomes 0; and
these are the only changes of the original weights. This path corresponds to a truth
assignment of the SATISFIABILITY problem. That is,xi = true if A+i is on the
path, andxi = f alse otherwise.

It is easy to show that such a truth assignment can guarantee that each clause
Cj is true. In fact, for any clause vertexqj , if all the literal vertices connecting
to the clause vertexqj are not on the above mentioned path fromt1 to tn+1, then
the length of any path fromt1 andqj is at least 2. This contradicts the proven fact
r = 1. Hence we know that at least one literal vertex connecting to the clause
vertex qj must be on the path, and this literal vertex just corresponds to atrue
literal of clauseCj , and hence clauseCj is true. In other words, we conclude that
the SATISFIABILITY problem is satisfiable.

As the number of vertices ism+3n+3, and the number of arcs does not exceed
mn + 10n+ 3m + 6, the transformation from the SATISFIABILITY problem to
the decision problem of the inverse center location problem is indeed a polynomial
reduction. Thus the inverse center location problem is NP-hard.

The proof is completed. 2
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3. Conclusion

From this note, we see that the inverse problem of a polynomially solvable problem
is not necessarily polynomially solvable and may become a more challenging NP-
hard problem. Roughly speaking, only if the feasible region of the inverse problem
is a polytope, can we ensure that thel1 inverse problem is solvable in polynomial
time. For example, the inverse linear programming problem is this kind. Unfortu-
nately, for the inverse location problem discussed in this note, its feasible region
cannot be characterised by a set of linear equations/inequalities. As to various types
of inverse center location problems, we shall propose effective solution methods in
forthcoming papers.
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