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Abstract. Given a feasible solution, the inverse optimization problem is to modify some parameters
of the original problem as little as possible, and sometimes also with bound restrictions on these
adjustments, to make the feasible solution become an optimal solution under the new parameter
values. So far it is unknown that for a problem which is solvable in polynomial time, whether
its inverse problem is also solvable in polynomial time. In this note we answer this question by
considering the inverse center location problem and show that even though the original problem is
polynomially solvable, its inverse problem is NP—hard.
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1. Introduction

Recently there are quite a few papers discussing inverse network flow problems
and inverse combinatorial optimization problems, see, for example, [1-5]. Given
a feasible solution for a particular optimization problem, the inverse optimization
problem is to modify some parameter values of the original problem as little as
possible (under a certain norm), and sometimes even with other restrictions such
as the bound constraints on the adjustment of some parameters, to make the given
feasible solution become an optimal solution under the new parameter values. As
shown in [3-5], the inverse problems of many combinatorial/network optimization
problems can be solved by strongly or weakly polynomial algorithms. In fact in [6]

it is shown that for a large class of combinatorial/network optimization problems,
if the original problem can be solved in polynomial times, then its inverse problem
can be solved in polynomial time by a quite uniform methodology. However, a
very interesting problem still remains unsolved: is it true that the inverse problem
is solvable in polynomial time whenever the original problem is solvable in poly-
nomial time? In this note, we will claim that the answer to this questidtoisWe

shall present an example, the inverse center location problem, which is NP-hard
although its original problem has a strongly polynomial method to solve. With
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this example, we see that some inverse optimization problems are more difficult to
solve than their original problems.

2. Inverse center location problem

The center location problem, which is to find the “best” location of a facility in
a network to minimize the distance from the facility to the most remote vertex of
the network, is a very practical problem and especially relevant to the problem of
locating optimally a hospital, a police station, a fire station, or any other service
facility. The center location problem is polynomially solvable [7].

We now consider the inverse center location problem, that is, to modify the
weights of a network as little as possible under/theorm such that a given vertex
becomes a center of the network. We describe the inverse center location problem
formally as follows.

LetG = (V, A, w) be a directed and connected graph, whérlis a vertex set,

Alis an arc setw : A — R, is a distance (weight) function. Letbe a specific
vertex inV. The inverse center location problem is to change® w* > 0 such
that

(a) s becomes a center of underw*, and

(b) the total adjustmen}_ |w(e) — w*(e)| is minimum.

ecA

The inverse center Ioéation problem has potential applications as it can be
related to the regional development plan and show how to spend as less cost as
possible to make an existing facility be ‘relocated’ to the center position. In this
section, we try to show that the inverse center location problem is NP-hard. The
technique which we use to reach this purpose is a polynomial time transformation
of the SATISFIABILITY problem into an instance of a decision problem of the
inverse center location problem.

A Boolean variablex is a variable that can assume only the valtres and
false. We callx the negation oft, wherex = falseif x = true, andx = true
if x = false A Boolean variable and its negation are both callegtals. Given
a group of Boolean variables,cdauseconsists of some literals of those Boolean
variables. A clause is saitdue if one of its literals istrue. The SATISFIABILITY
problem [8] is as follows:

Givenm clausegCy, Co, - - - , C,,} involving n Boolean variable$xy, xo, - - -,
x,}, is there a set of values for these Boolean variables (caltegttaassignment
such that all clauses ateie?

If such a set of values exists, we say the SATISFIABILITY problensasis-
fiable

The SATISFIABILITY problem is the earliest natural NP—complete problem
proven by Cook [9].

THEOREM . The inverse center location problem is NP-hard.
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Proof. Given an instance of the inverse center location prollem (V, A, w)
and a numbel, the decision problem of the inverse center location problem is
whether there is a solutian* > 0 (called a feasible solution) satisfying the request
(a) above and

(€) X lw(e) —w*(e)| < L.
ecA
First, it is trivial to see that the decision problem of the inverse center location

problem is in the NP class.

Let us now construct a reduction from the SATISFIABILITY problem to a
decision problem of an inverse center location problem.

Consider an arbitrary instance of the SATISFIABILITY problem witlvari-
ables{xy, x», - - - , x,} andm clauseqCy, C», - - - , C,,}. Without loss of generality,
we assume that, for each variahieand each claus€;, x; does not appear i@
more than once, and andx; do not both appear i@;.

Construct a digraplés = (V, A) as follows:

n m
V = Jtn, ui, vid Utnia, gz, s} U g

i=1 j=1

A= U{(tl’ ui)v (tiv U[), (uiv ti+l)v (U[, ti+l)} U {(tl”l+lv tn+2)v ([n+lv tn+3)}
i=1

uJUd @i gplxi € €1 Ui, g% € €

i=1j =1
n+1 n

U U{(tn+2, ti)’ (tll+3a tl)} U U{(l‘n+2, Mi)a (fn+2, Ui)a (tn+37 ui)’ (tll+3a U,’)}
i=1 i=1

U Har2: - (tars @7, (@75 1)} U { sz, 113, (s, 1))
j=1

In this digraph, the Boolean variahlge corresponds to vertax;, its negatiori;
corresponds to vertex, and the claus€; corresponds to vertey;. Further, there
is an arc(u;, g;) if and only if x; € C;, and(v;, g;) exists if and only ifx; € C;.
We callu; andv; literal verticesg; clause vertices, and the ares, ¢;) or (v;, q;)
clause arcs. Note that from,, andt,. 3, there are arcs to all other vertices. Let
s = 1, define a weight function o6 as

0 e = (u;, tix1) Or (v;, tig1),

w(e) = { 1 otherwise.

Note that the distances from, , (andt,3) to all other vertices are 1.

Now we claim that the SATISFIABILITY problem is satisfiable if and only if
there is a feasible solution for the decision problem of the above inverse center
location problem whose total absolute adjustment of the weights is atr{ost
L =nin (c)).
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Figure 1. The digraph G

We first assume that the SATISFIABILITY problem is satisfiable. P&t =
11718222 . . . ;Z; . . . 1,41 denote the path from to ¢, 1 wherez; is the vertex corres-
ponding to the true literal, that is; is either vertexs; or v; according toy; = true
or false,i = 1, 2,..., n. For example, ifx; = falseandx, = true, then the
part of the path fromy, to 3 would bervitusts. Let us change the weights
of the arcs on pathP* to zero to obtain the new weight vectar*. Obviously,

> |lw(e) — w*(e)|] = n. We denote byi,-(r1, p) the distance from; to a ver-
ecA

tex p € V(G) underw*. Thend,«(t,, p) < 1 for every vertexp € V(G). To
justify this, first it is clear thati,-(¢1, p) = 0 for each vertexp on P*. Hence
dy(t1, thy2) < 1, dy=(t1, t,43) < 1, andd,« (11, z}) < 1 for each vertex! (since
d,«(t1, t;) = 0) wherez; denotes either vertex oru; notonP*,i =1, 2,..., n.
And for each clause vertex;, as there exists at least one true literal, gagyin
clauseC;, and the vertex corresponding &pis on P*, implying d,- (t1, ¢;) < 1.
Hence the claim is true. But from any vertex other tharits largest distance to
other vertices is at least 1. So, vertghecomes a center 6f under the new weight
w*. In other wordsw* is a feasible solution satisfying (a) and (c) with= n.
Conversely, suppose that there exists a solutibsuch that, becomes a center
of G underw* and > |w(e) — w*(e)| < n. We need to find a truth assignment to

ecA
make all clauses true.
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Denote byd, (u, v) the distance from vertex to vertexv underw, which is
equal to the length of the shortest path frarto v underw, and denote by, ()
the largest distance fromto other vertices undep.

Letr = d,«(t1). Sinced,, (11, t,12) = n + 1, and the total adjustment of the
weights cannot be more than of courser > 1. On the other hand, a&, (,,,») =
1, we know thatl,« (t,.2) < n+ 1. Sincerty is now a centel; < dy+(f,42) < n+1.
As all acyclic paths from, to 1, , have lengthh + 1 underw, butd,« (t1, t,,2) <
dy+(t1) = r, we need to shorten at least one p&hrom r, to ¢,,.» by length
x = n+1—r ormore. The fact that undes all arcs fromz,» has unit length
means that we need to extend one arc frgm by at least length — 1 =n — x
to ensured,«(t,,2) > r. Similarly, we should also extend one arc froms by at
least length: — x to ensurel,«(¢,.3) > r. So, the total modification of the weights
is at leastx + 2(n — x) = 2n — x. We claim thatt = ». In fact, fromr > 1, we
havex < n. On the other hand, fromn2— x < Y |w(e) — w*(e)| < n, we have

ecE
x = n. Thusx = n, from which we can easilyededuce that= 1, and only one
acyclic path frony, to ¢, » can be modified.

Furthermore, we know that no adjustment can be madézon, t,.») and
(ty11, thya). In fact if say, the ardz, 1, f,42) is shortened by > 0, then the
distance fromy; to ,,3 underw* is at leastn + 1) — (n — 8) = 1+ §. So,

r = dy« (11, t,13) = 148 which conflicts withr = 1. Therefore we can only modify

one path frony; to 7,,1. Such a path consists of one and only one route froim
t;p1inthe pair{Af, A7} fori = 1,2, --- , n, whereA; = {(t;, u;), (u;, t;+1)} and

A7 = {(t;, v), (v, t;11)}. Note that if A} is on the path, the weight af;, u;) is
reduced from 1 to O; if the path contaids , the weight of(z;, v;) becomes 0; and
these are the only changes of the original weights. This path corresponds to a truth
assignment of the SATISFIABILITY problem. That is, = true if A is on the

path, andr; = false otherwise.

It is easy to show that such a truth assignment can guarantee that each clause
C; is true. In fact, for any clause vertey;, if all the literal vertices connecting
to the clause vertey; are not on the above mentioned path fronto 7,1, then
the length of any path from andg; is at least 2. This contradicts the proven fact
r = 1. Hence we know that at least one literal vertex connecting to the clause
vertexg; must be on the path, and this literal vertex just correspondsttoea
literal of clauseC;, and hence clausg; is true. In other words, we conclude that
the SATISFIABILITY problem is satisfiable.

As the number of vertices i8 + 3n + 3, and the number of arcs does not exceed
mn + 10n + 3m + 6, the transformation from the SATISFIABILITY problem to
the decision problem of the inverse center location problem is indeed a polynomial
reduction. Thus the inverse center location problem is NP-hard.

The proof is completed. O
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3. Conclusion

From this note, we see that the inverse problem of a polynomially solvable problem
is not necessarily polynomially solvable and may become a more challenging NP-
hard problem. Roughly speaking, only if the feasible region of the inverse problem
is a polytope, can we ensure that thénverse problem is solvable in polynomial
time. For example, the inverse linear programming problem is this kind. Unfortu-
nately, for the inverse location problem discussed in this note, its feasible region
cannot be characterised by a set of linear equations/inequalities. As to various types
of inverse center location problems, we shall propose effective solution methods in
forthcoming papers.
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